GASNet:
A Portable High-Performance

Communication Layer for Global
Address-Space Languages

Dan Bonachea, Mike Welcome,
Christian Bell, Paul Hargrove

In conjunction with the joint UC Berkeley and LBL
Berkeley UPC compiler development project
http://upc.lbl.gov

NERSC/UPC Runtime System
Organization

UPC Code}——

A
Platform-
independent
Compiler-
.quhNork_ independent
independent
Language-

independent

GASNet Communication System- Goals

« Language-independence: Compatibility with several
global-address space languages and compilers
— UPC, Titanium, Co-array Fortran, possibly others..

— Hide UPC- or compiler-specific details such as shared-pointer
representation

» Hardware-independence: variety
of parallel architectures & OS's

— SMP: Origin 2000, Linux/Solaris
multiprocessors, etc.

— Clusters of uniprocessors: Linux
clusters (myrinet, infiniband, via,
etc)

— Clusters of SMPs: IBM SP-2
(LAPI), Compaq Alphaserver, Linux
CI.UIMPS. etc.

GASNet Communication System- Goals (cont)

* Ease of implementation on new hardware
— Allow quick implementations

— Allow implementations to leverage
performance characteristics of hardware

— Allow flexibility in message servicing paradigm:
 polling, interrupts, hybrids, etc

« Want both portability & performance

GASNet Communication System- Architecture

« 2-Level architecture to ease implementation:
* Core API

— Most basic required primitives, as narrow and
general as possible

— Implemented directly on each platform

— Based heavily on active messages paradigm

 Extended API

— Wider interface that includes more complicated
operations

— We provide a reference implementation of the
extended API in terms of the core API

— Implementors can choose to directly implement
any subset for performance - leverage hardware
support for higher-level operations

Progress to Date

Designed & wrote the GASNet Specification

Reference implementation of extended API
— Written solely in terms of the core API

Implemented a portable MPI-based core API

Completed native (core&extended) GASNet
implementations for several high-performance
networks:

— Quadrics Elan (Dan)

— Myrinet GM (Christian)

— IBM LAPI (Mike)

Did initial public release of GASNet

Implementation under-way for Infiniband (Paul)
— other networks under consideration

Core API — Active Messages

Super-Lightweight RPC
— Unordered, reliable delivery
— Matched request/reply serviced by "user"-provided lightweight handlers

— General enough to implement almost any communication pattern
Request/reply messages

— 3 sizes: short (<=32 bytes),medium (<=512 bytes), long (DMA)
Very general - provides extensibility

— Available for implementing compiler-specific operations

— scatter-gather or strided memory access, remote allocation, etc.
AM previously implemented on a number of interconnects

— MPI, LAPI, UDP/Ethernet, Via, Myrinet, and others

Includes mechanism for explicit atomicity control in handlers
— Even 1in the presence of interrupts & multithreading

— Handler-safe locks & no-interrupt sections

Extended API — Remote memory operations

* Orthogonal, expressive, high-performance interface
— Gets & Puts for Scalars and Bulk contiguous data
— Blocking and non-blocking (returns a handle)
— Also have a non-blocking form where the handle 1s implicit

* Non-blocking synchronization
— Sync on a particular operation (using a handle)
— Sync on a list of handles (some or all)

— Sync on all pending reads, writes or both (for implicit
handles)

— Sync on operations initiated 1n a given interval
— Allow polling (trysync) or blocking (waitsync)
« Useful for experimenting with a variety of parallel
compiler optimization techniques

Extended API — Remote memory operations
« API for remote gets/puts:

void get (void *dest, int node, void *src, int numbytes)
handle get nb (void *dest, int node, void *src, int numbytes)

void get nbi(void *dest, int node, void *src, int numbytes)

void put (int node, void *src, void *dest, int numbytes)
handle put nb (int node, void *src, void *dest, int numbytes)

void put_nbi (int node, void *src, void *dest, int numbytes)

« "nb"/"nb1" = non-blocking with explicit/implicit handle

* Also have "value" forms that are register-memory, and "bulk" forms
optimized for large memory transfers

« Extensibility of core API allows easily adding other more complicated
access patterns (scatter/gather, strided, etc)

Extended API — Remote memory operations

* API for get/put synchronization:

« Non-blocking sync with explicit handles:
int try syncnb (handle)

volid wailt syncnb (handle)

int try syncnb some (handle *, int numhandles)
volid wait syncnb some (handle *, int numhandles)
int try syncnb all (handle *, int numhandles)

volid wait syncnb all (handle *, int numhandles)

* Non-blocking sync with implicit handles:
int try syncnbi gets()
volid walt syncnbi gets ()
int try syncnbi puts()
volid walt syncnbi puts ()
int try syncnbi all() // gets & puts

volid wailt syncnbi all ()

Code Generation Tradeofts

Blocking vs. Non-blocking puts/gets

Put/Get variety: non-bulk vs. bulk

— optimized for small scalars vs large zero-copy

— difference 1n semantics - put src, alignment

Put/Get synchronization mechanism

— expressiveness/complexity tradeoffs

— explicit handle vs. implicit handle, access
regions

Work remains to explore these tradeoffs 1n

the context of code generation

Performance Results

Experiments

* Micro-Benchmarks: ping-pong and flood

Ping-pong
round-trip latency test Flood bandwidth test

UT/GET Inv. throughput
Tatency 3 i 7/\>
—ACK T/GET
T Total \

Time

Total
Time

\>

AN ACK

L . . .
Inv. throughput = Total time / iterations

Round-trip Latency = : . :
b Y BW = msg size * iter / total time

Total time / iterations

GASNet Configurations Tested

* Quadrics (elan):
— mpi-refext - AMMPI core, AM-based puts/gets
— elan-elan - pure native elan implementation
* Myrinet (GM):
— mpi-refext - AMMPI core, AM-based puts/gets
— gm-gm - pure native GM implementation
 IBM SP (LAPI):
— mpi-refext - AMMPI core, AM-based puts/gets
— lapi-lapi - pure native LAPI implementation

System Configurations Tested

Quadrics - falcon/colt (ORNL)
— Compagq Alphaserver SC 2.0, ES40 Elan3, single-rail
— 64-node, 4-way 667 MHz Alpha EV67, 2GB, libelan1.2/1.3, OSF 5.1

Quadrics - lemieux (PSC)

— Compagq Alphaserver SC, ES45 Elan3, double-rail (only tested w/single)
— 750-node, 4-way 1GHz Alpha, 4GB, libelan1.3, OSF 5.1

Quadrics - opus (PNL)

— Itanium-2 Cluster, Elan3, double-rail (only tested w/single)

— 128-node, 2-way 1GHz Itanium-2, 12GB, libelan1.4, Redhat Linux 7.2
Myrinet - Alvarez (NERSC)

— x86 Cluster, 33Mhz 64-bit Myrinet 2000 PCI164C, 200 MHz Lanai 9.2
— 80-node, 2-way 866 Mhz P3, 1GB, GM 1.5.1, Redhat Linux 7.2

— Empirical PCI bus bandwidth: 229MB/sec read, 245 MB/sec write
LAPI - seaborg (NERSC)

— IBM RS/6000 SP Power3, Colony-GX network
— 380-node, 16-way 375MHz Power3, 64GB, 64KB L1, 8MB L2, AIX 5.1

microseconds

65

60

55

50

45

40

35
30

25

20

15

10

GASNet Put/Get Roundtrip Latency
(min over msg sz)

| mget_nb

@ put_nb

I

INN

mpi elan mpi elan mpi elan mpi elan mpi gm
L = S L S (= A\ /
v . N s V-
quadrics quadrics quadrics quadrics myrinet
falcon colt opus lemieux alvarez

mpi lapi lapi-
- /7 poll
Colony/GX

seaborg

400
375
350
325

300
275

250
225
200
175
150
125
100

75

50

25

MB/sec

GASNet Put/Get Bulk Flood Bandwidth
(max over msg sz)

@ put_nb_bulk
m get_nb_bulk

mpi elan

quaaﬂcs

falcon

mpi elan mpi elan mpi elan mpi gm
quaarics quadrics quaérics myrinet
colt opus lemieux alvarez

mpi

lapi lapi-
poll
Colony/GX

seaborg

Quadrics elan-conduit

* Implementation based on elan-lib

— the "portable" Quadrics API (will be supported on
clan4)

e Core API

— Polling-based implementation on elan queue API and
TPORTS API

— Uses zero-copy elan RDMA puts for AM Long msgs

 Extended API

— Put/get implemented using zero-copy elan RDMA
puts/gets 1in the common case

— Some uncommon cases require bounce buffers or active
messages as fallback

— Barriers implemented using Quadrics hardware barrier
for anonymous barriers, or broadcast/barrier for named

microseconds

Quadrics-lemieux

20 Roundtrip ping-pong latency (non-bulk)

—s— put

-~ = get
put_nbi

~ . get_nbi

—x— put_nb

-w—get nb

1 10 100
Message Size (bytes)

1000

10000

N

LS,
put

Empirical round-trip latency of hardware: ~3.4 us

Quadrics-lemieux

300 Flood Bandwidth (bulk)

250

—s— put_bulk
~ = get_bulk
put_nbi_bulk

MB/sec
o
o

~ . get_nbi_bulk

—x— put_nb_bulk
— = get_nb_bulk

50

0 10000 20000 30000 40000 50000 60000 70000
Message Size (bytes)

Theoretical peak bandwidth of NIC hardware: 340 MB/sec

Quadrics elan-conduit: Future work
* Work-around or resolve some problems
encountered 1n Quadrics elan-lib software
— dual-rail operation
— loopback on SMP nodes sharing a NIC
* Further performance tuning
— based on feedback from app experience
— 1mplement split-phase barrier on NIC processor

 Continued maintenance with new versions of
elanlib

— new elan4 hardware expected soon

 We'd really like some Quadrics hardware of
our own to play with! :)

Myrinet gm-conduit

* Work done by Christian Bell

 Initial Core API implementation took 2 weeks

— AM implementation fairly straightforward over GM
for Small/Medium AMs

— Long/LongAsync AMs required more work for
DMA support (addressed in extended API and
Firehose algorithm)

— Polling-based conduit (currently)

— Under threaded GASNet configuration (PAR),
allows for concurrent handler execution

Myrinet gm-conduit

 Extended API took 1 month

— Proposed and published a new algorithm, Firehose
algorithm, to improve performance of one-sided operations
over pinning-based networks (GM, Infiniband) (to be
presented at CAC '03)

— One-sided operations used for bulk and non-bulk puts
— Gets currently use an AM with a one-sided put (GM 2.0 will
add one-sided gets)
* Bootstrapping problem

— Each Myrinet site must develop a custom bootstrapper or
use 3"d-party solutions (Millennium nightmare)

— GM conduit provides bootstrapping support for both
dedicated (PBS) and non-dedicated (gexec) cluster
configurations.

microseconds

—e— put
—=—get
put_nbi
-~ get_nbi
—xput_nb

—=—get_nb

10

Alvarez-Myrinet
Roundtrip ping-pong latency (non-bulk)

100
Message Size (bytes)

1000

10000

Empirical round-trip latency of hardware: ~17 us

gets

puts

Alvarez-Myrinet

200 Flood Bandwidth (bulk)

180

160

140

120
— o put_bulk

100 = get_bulk
put_nbi_bulk

MB/sec

80

-~ get_nbi_bulk

60 —x— put_nb_bulk
—=—get_nb_bulk

40

20

0 10000 20000 30000 40000 50000 60000 70000
Message Size (bytes)

Empirical peak bandwidth of hardware: ~210 MB/sec (puts only)

Myrinet gm-conduit

e Future
— More efforts in tuning Firehose algorithm
— Support for GM 2.0 and one-sided gets
— Hooks for minimal interrupt support
— Continued bootstrapping support

GASNet/LAPI for IBM SP

 Initial (non-optimized) implementation took 2
weeks

— Use of GASNet conduit template provided simple
implementation framework

— GASNet PUT/GET Implemented using LAPI PUT/GET

— GASNet AM Request/Reply and Barriers implemented using
LAPI AMs

— Non-blocking Sync methods implemented using LAPI counters
— Handler Safe Locks implemented using Pthread mutex

— No-Interrupt sections a No-op

— No memory registration 1ssues

* 3 weeks for Active Message optimizations
* LAPI Conduit can run in Interrupt or Polling mode

GASNet/LAPI: AM Optimizations

Optimizations only apply to GASNet operations

implemented using LAPI AM

— Specifically GASNet AM and Barrier operations
— Not needed for GASNet PUT/GET

GASNet token caching and re-use to reduce allocation
overhead

Packing small message payload into LAPI AM Header
Handler argument to reduce GASNet AM latency.

Implementation of “Ready Queue” for quick execution
of GASNet AM Request/Reply handlers

— Eliminate 40-60 usec latency to schedule LAPI Completion Handler

— “Ready” handlers executed by main thread while polling

[LAPI AM: Execution Flow

Origin Task
® 1: Amsend(tgt, HH,uhdr,payload...)
18-20 us
Data Data Thdr

Notes:

* Data

Time: 80-100 us (no data payload)

« HH is LAPI Header Handler

* CH is LAPI Completion Handler

* HH cannot block or issue comm calls
* uhdr 1s arg to HH (restricted size)

* CH registration is optional
* CH can execute arbitrary code

Target Task

2: HH executes in Dispatcher
* specify tgt addr for payload
* register CH (optional)

3: After all data arrives Dispatcher
will schedule CH (if registered)

Payload 1s optional

40-60 us!!!

—

5: Completion at Origin

4: CH executes in Completion Thread

microseconds

LAPI seaborg (polling)

80 Roundotrip ping-pong latency (non-bulk)

—&— put
-~ mget
~ put_nbi
~ get_nbi

—x— put_nb

—w—get_nb

1 10 100 1000
Message Size (bytes)

10000

Empirical round-trip latency of hardware: ~42 us

400

350

300

250

200

MB/sec

150
100

50

0 10000 20000

LAPI seaborg (polling)
Flood Bandwidth (bulk)

—s— put_bulk

— = get_bulk
put_nbi_bulk
~ . get_nbi_bulk

—x— put_nb_bulk
—®»— get_nb_bulk

30000 40000 50000
Message Size (bytes)

60000

70000

Empirical peak bandwidth of hardware: ~350 MB/sec

GASNet/LAPI: Future Work

* Possible Future Optimizations:

— Reduce/Eliminate locking overhead (costly on SP)
» Token allocation
» Access to “Ready Queue”

— Improve Split-phase Barrier implementation
* Broadcast Tree?
* Implement as blocking barrier using LAPI Gfence?

— Throttle NB PUT/GET to avoid performance drop-off

* Future LAPI may allow restricted communication in HH

— Would eliminate need for ready queue or CH for small
message GASNet Request AM

— NOTE: IBM will use this (future) LAPI version to re-
implement MPI

Conclusions

GASNet provides a portable & high-performance interface for
implementing GAS languages

« two-level design allows rapid prototyping & careful tuning
for hardware-specific network capabilities

 We have a fully portable MPI-based implementation of
GASNet, several native implementations (Myrinet,

Quadrics, LAPI) and other implementations on the way
(Infiniband)

* Performance results are very promising

— Overheads of GASNet are low compared to underlying network

— Interface provides the right primitives for use as a compilation
target, to support advanced compiler communication scheduling

Future Work

Further tune our native GASNet implementations

Implement GASNet on new 1nterconnects
— Infiniband, Cray T3E, Dolphin SCI, SGI SHMEM, Cray X-1...

Implement GASNet on other portable interfaces
— UDP/Ethernet, ARMCI...

Augment Extended API with other useful functions

— Collective communication

* broadcast, reduce, all-to-all

« 1interface to be based on UPC Collective spec & Titanium collective ops
— More sophisticated memory access ops

« strided, scatter/gather (indexed put/get)
* 1interface to be based on ARMCI and Titanium ops

Network benchmarking based on GASNet (Paul)

More Future Work

* Collaborate with ARMCI effort
— GASNet-over-ARMCI / or using ARMCI

» Potential External Collaborations
— (Go)DIVA HPCS Darpa project, Quadrics, others..

* Implement some small, real applications directly
on GASNet

— Experiment with the interface to gain further insights
into good code-generation strategies

— Gather some app-level performance results

Extra Slides

Introduction

 Two major paradigms for parallel programming
— Shared Memory

* single logical memory space, loads and stores for communication
* ease of programming

— Message Passing
« disjoint memory spaces, explicit communication
« often more scalable and higher-performance

* Another Possibility: Global-Address Space (GAS)
Languages

— Provide a global shared memory abstraction to the user, regardless
of the hardware implementation

— Make distinction between local & remote memory explicit

— Get the ease of shared memory programming, and the performance
of message passing

— Examples: UPC, Titanium, Co-array Fortran, ...

The Case for Portability

* Most current UPC compiler implementations
generate code directly for the target system

— Requires compilers to be rewritten from scratch for each
platform and network

 We want a more portable, but still high-performance
solution
— Want to re-use our investment in compiler technology

across different platforms, networks and machine
generations

— Want to compare the effects of experimental parallel
compiler optimizations across platforms

— The existence of a fully portable compiler helps the
acceptability of UPC as a whole for application writers

Core API — Atomicity Support for Active Messages

Atomicity 1n traditional Active Messages:
— handlers run atomically wrt. each other & main thread
— handlers never allowed block (e.g. to acquire a lock)
— atomicity achieved by serializing everything (even when not reqd)

Want to improve concurrency of handlers

Want to support various handler servicing paradigms while
still providing atomicity

— Interrupt-based or polling-based handlers, NIC-thread polling

— Want to support multi-threaded clients on an SMP

— Want to allow concurrency between handlers on an SMP

New Mechanism: Handler-Safe Locks

— Special kind of lock that 1s safe to acquire within a handler

« HSL's include a set of usage constraints on the client and a set of
implementation guarantees which make them safe to acquire in a handler

— Allows client to implement critical sections within handlers

Why interrupt-based handlers cause problems
App. Thread

Async

Interrupt
\ AM Handler

Time

DEADLOCK

\4

Analogous problem if app thread makes a synchronous network call
(which may poll for handlers) within the critical section

Handler-Sate Locks

« HSL 1s a basic mutex lock
— 1mposes some additional usage rules on the client
— allows handlers to safely perform synchronization

« HSL's must always be held for a "bounded" amount of time
— Can't block/spin-wait for a handler result while holding an HSL
— Handlers that acquire them must also release them
— No synchronous network calls allowed while holding

— AM Interrupts disabled to prevent asynchronous handler execution
* Rules prevent deadlocks on HSL's involving multiple
handlers and/or the application code

— Allows interrupt-driven handler execution
— Allows multiple threads to concurrently execute handlers

No-Interrupt Sections

 Problem:

— Interrupt-based AM implementations run handlers asynchronously
wrt. main computation (e.g. from a UNIX signal handler)

— May not be safe if handler needs to call non-signal-safe functions
(e.g. malloc)
* Solution:

— Allow threads to temporarily disable interrupt-based handler
execution: hold interrupts(), resume interrupts()

— Worap any calls to non-signal safe functions in a no-interrupt
section

— Hold & resume can be implemented very efficiently using 2 simple
bits in memory (interruptsDisabled bit, messageArrived bit)

Performance Benchmarking of
prototype MPI-based GASNet core
(built on pre-existing AM-MPI)

Experiments

* Experimental Platform: IBM SP Seaborg
e Micro-Benchmarks: ping-pong and flood

« Comparison

— blocking get/put, non-blocking get/put (explicit and implicit)

— AMMPI, MPI
Ping-pong
round-trip test

REQ

Tatency
‘@’

Total /

Time .
\
1_4/

Round-trip Latency =
Total time / iterations

Flood test
3 @M
\RE()}
Total \
Time .
\ A ACK

Inv. throughput = Total time / iterations
BW = msg size * iter / total time

/51

70
65
60

50
45
40
35
30

Latency (IBM SP, network depth = 8)

2N
// —&— blocking get

blocking put

non-blocking get

“—non-blocking put
—— AMMPI

T —— MPI

T 2 4 bytes 8 16 32

* Additional overhead of get/puts over AMMPI: 7 us
* Blocking and non-blocking get/puts equivalent

Bandwidth (IBM SP, network depth = 8)

250
— MPI
—— AMMPI
200 non-blocking ge
non-blocking puf
~¢ blocking get J -
150 blocking put i
-~
v
/ / A

(gu o

MB/sec

o B
o S S R Y R S
SN N GRUAR

X © 1V
%) A
’I/Q

1V Re)
O) o) ©
N7 A $7 O
& & S bytes

« Non-blocking get/puts performed as well as AMMPI
« Non-blocking get/puts are benefited from overlap

Inv. Throughput (IBM SP, network depth = 8)

1200

—# blocking get

1000 — blocking put f
non-blocking get
non-blocking put

800 |+ AMMPI /+
o — MP
-}

/V

600

400

200

| |

bytes
16 32 64 128 256 512 10242048 4096 819216388276&H553AE+05

* Non-blocking get/puts performed as well as
AMMPI

Inv. Throughput (IBM SP, network depth = 8)

180
160
140
120
100
80
60
40
20
0

f
~* blocking get
/ blocking put
- non-blocking get
: " non-blocking put
e ~ AMMPI
— MPI
/+
P

16 32 64 128 256 512 1024 2048 4096 bytes

e Implies sender overhead.

e The difference from two round-trip latency can be used to
estimate wire-delay and receiver overhead

microseconds

40

GASNet Put/Get Latency

(min over msg sz)

@ put_nb

m get_nb

35

30

25

20 A

15 -

10 -

1

a7

mpi- elan-

elan-

mpi- elan- elan-

mpi- gm-gm mpi- gm-gm

J \refext

J

efext refext elan efext refext elan Uefext
h'd

quadrics -falcon

quadrics - lemieux

myrinet - millennium

myrinet - alvarez

300

GASNet Put/Get Bulk Bandwidth
(max over msg sz)

250

o put_nb_bulk
m get_nb_bulk

200

150 -

MB/sec

100 -

50 -

|

mpi- elan-

quadrics - falcon

elan- mpi- elan- elan- mpi- gm-gm

efext refext elan efext refext elan ref%xt/\J reﬂ‘%xtf\/

quadrics - lemieux myrinet - millennium

mpi- gm-gm

myrinet - alvarez

Latency was good but can be tuned further

Results

Explicit and implicit non-blocking get/put performed equally well

— blocking and non-blocking I/O had 7 us overhead over AMMPI

Bandwidth and throughput were satisfactory
— Non-blocking I/O performed as well as AMMPI.

Overall performance 1s dominated by AMMPI implementation
Expect better GASNet performance on a native AM

implementation
Blocking Non-blocking | AMMPI MPI
Latency 67 us 67 us 60 us 39 us
(ping-pong round trip)
Inv throughput 79 us 29 us 29 us 8 us
(flood: at 16bytes)
Bandwidth 113 MB/sec | 160 MB/sec 159 MB/sec | 242 MB/sec

(flood: at 128KB)

